Federico Toschi, Ph.D.

a research website on fluid dynamics

Category: Uncategorized (page 2 of 3)

Protected: 3FMX0 - Study guide

This content is password protected. To view it please enter your password below:

Fluctuating hydrodynamics

[sz-video url="http://vimeo.com/86315883"/]

[vimeo 86315883]

Alumni postdoc

Calin Dan -

Prasad Perkelar - Now faculty at TIFR Hyderabad (India)

Roger Jeurissen - Now at ACFD Consultancy (NL)

Badr Kaoui - Now postdoc at Universität Bayreuth (Germany)

Oleksii Rudenko - Now at ASML (NL)

Valentina Lavezzo - Now at Philips (NL)

Andrea Scagliarini - Now Staff Scientist, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (Germany)

Matteo Lulli - Now postdoc at University of Tor Vergata (Italy)

Sasia Tympel -

Alumni Ph.D. students

Florian Janoschek (defended 11 December 2013)

Cover Florian Janoschek

Theo Driessen (defended 20 December 2013, at University of Twente co-supervised with Detlef Lohse)

Theo Driessen cover

Sudhir Srivastava (defended 7 May 2014)

Cover Sudhir Srivastava

Riccardo Scatamacchia (defended 29 January 2015)

Cover Riccardo Scatamacchia

Francesca Storti  (defended 8 December 2014)








Alessandro Corbetta (defended 1 February 2016)








Michel van Hinsberg (defended 20 June 2016)







Francesca Tesser (defended 14 December 2016)


Sten Reijers

Compressible effects in drops impacted by a laser pulse

StenThe impact of a laser pulse onto a liquid droplet induces strong deformation and propulsion of the droplet. Here, we aim to understand the droplet dynamics by performing lattice-Boltzmann simulations and doing a theoretical analysis. In the simulations, we model the laser impact as a pressure pulse on the droplet surface. The lattice-Boltzmann method provides an ideal framework to do this, as it allows multiphase fluids where we can study: phase change, bubble nucleation and compressibility effects (e.g. shock waves traveling inside the drop) induced by the pressure pulse. On the theoretical side, we want to get key insight in how the pressure-waves propagate and how velocity-fields build up as function of different pressure conditions on the boundary of the droplet.

Prasad Perlekar

Roger Jeurissen


Convection in multiphase fluid flows using lattice Boltzmann methods

Biferale, L., Perlekar, P., Sbragaglia, M. & Toschi, F. (2012). Convection in multiphase fluid flows using lattice Boltzmann methods. Physical Review Letters, 108(10):104502


We present high-resolution numerical simulations of convection in multiphase flows (boiling) using a novel algorithm based on a lattice Boltzmann method. We first study the thermodynamical and kinematic properties of the algorithm. Then, we perform a series of 3D numerical simulations changing the mean properties in the phase diagram and compare convection with and without phase coexistence at Rayleigh number Ra\sim 10^7. We show that in the presence of nucleating bubbles non-Oberbeck-Boussinesq effects develop, the mean temperature profile becomes asymmetric, and heat-transfer and heat-transfer fluctuations are enhanced, at all Ra studied. We also show that small-scale properties of velocity and temperature fields are strongly affected by the presence of the buoyant bubble leading to high non-Gaussian profiles in the bulk.

Inverse energy cascade in three-dimensional isotropic turbulence

Biferale, L., Musacchio, S. & Toschi, F. (2012). Inverse energy cascade in three-dimensional isotropic turbulence. Physical Review Letters, 108(16):164501


We study the statistical properties of homogeneous and isotropic three-dimensional (3D) turbulent flows. By introducing a novel way to make numerical investigations of Navier-Stokes equations, we show that all 3D flows in nature possess a subset of nonlinear evolution leading to a reverse energy transfer: from small to large scales. Up to now, such an inverse cascade was only observed in flows under strong rotation and in quasi-two-dimensional geometries under strong confinement. We show here that energy flux is always reversed when mirror symmetry is broken, leading to a distribution of helicity in the system with a well-defined sign at all wave numbers. Our findings broaden the range of flows where the inverse energy cascade may be detected and rationalize the role played by helicity in the energy transfer process, showing that both 2D and 3D properties naturally coexist in all flows in nature. The unconventional numerical methodology here proposed, based on a Galerkin decimation of helical Fourier modes, paves the road for future studies on the influence of helicity on small-scale intermittency and the nature of the nonlinear interaction in magnetohydrodynamics.

Population dynamics under flow

« Older posts Newer posts »